Turbopuffer
Setup
First you must sign up for a Turbopuffer account here. Then, once you have an account you can create an API key.
Set your API key as an environment variable:
export TURBOPUFFER_API_KEY=<YOUR_API_KEY>
Usage
Here are some examples of how to use the class. You can filter your queries by previous specified metadata, but keep in mind that currently only string values are supported.
See here for more information on acceptable filter formats.
import { OpenAIEmbeddings } from "@langchain/openai";
import { TurbopufferVectorStore } from "@langchain/community/vectorstores/turbopuffer";
const embeddings = new OpenAIEmbeddings();
const store = new TurbopufferVectorStore(embeddings, {
apiKey: process.env.TURBOPUFFER_API_KEY,
namespace: "my-namespace",
});
const createdAt = new Date().getTime();
// Add some documents to your store.
// Currently, only string metadata values are supported.
const ids = await store.addDocuments([
{
pageContent: "some content",
metadata: { created_at: createdAt.toString() },
},
{ pageContent: "hi", metadata: { created_at: (createdAt + 1).toString() } },
{ pageContent: "bye", metadata: { created_at: (createdAt + 2).toString() } },
{
pageContent: "what's this",
metadata: { created_at: (createdAt + 3).toString() },
},
]);
// Retrieve documents from the store
const results = await store.similaritySearch("hello", 1);
console.log(results);
/*
[
Document {
pageContent: 'hi',
metadata: { created_at: '1705519164987' }
}
]
*/
// Filter by metadata
// See https://turbopuffer.com/docs/reference/query#filter-parameters for more on
// allowed filters
const results2 = await store.similaritySearch("hello", 1, {
created_at: [["Eq", (createdAt + 3).toString()]],
});
console.log(results2);
/*
[
Document {
pageContent: "what's this",
metadata: { created_at: '1705519164989' }
}
]
*/
// Upsert by passing ids
await store.addDocuments(
[
{ pageContent: "changed", metadata: { created_at: createdAt.toString() } },
{
pageContent: "hi changed",
metadata: { created_at: (createdAt + 1).toString() },
},
{
pageContent: "bye changed",
metadata: { created_at: (createdAt + 2).toString() },
},
{
pageContent: "what's this changed",
metadata: { created_at: (createdAt + 3).toString() },
},
],
{ ids }
);
// Filter by metadata
const results3 = await store.similaritySearch("hello", 10, {
created_at: [["Eq", (createdAt + 3).toString()]],
});
console.log(results3);
/*
[
Document {
pageContent: "what's this changed",
metadata: { created_at: '1705519164989' }
}
]
*/
// Remove all vectors from the namespace.
await store.delete({
deleteIndex: true,
});
API Reference:
- OpenAIEmbeddings from
@langchain/openai
- TurbopufferVectorStore from
@langchain/community/vectorstores/turbopuffer
Related
- Vector store conceptual guide
- Vector store how-to guides