Tigris
Tigris makes it easy to build AI applications with vector embeddings. It is a fully managed cloud-native database that allows you store and index documents and vector embeddings for fast and scalable vector search.
Compatibility
Only available on Node.js.
Setup
1. Install the Tigris SDK
Install the SDK as follows
- npm
- Yarn
- pnpm
npm install -S @tigrisdata/vector
yarn add @tigrisdata/vector
pnpm add @tigrisdata/vector
2. Fetch Tigris API credentials
You can sign up for a free Tigris account here.
Once you have signed up for the Tigris account, create a new project called vectordemo
.
Next, make a note of the clientId
and clientSecret
, which you can get from the
Application Keys section of the project.
Index docs
- npm
- Yarn
- pnpm
npm install -S @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
import { VectorDocumentStore } from "@tigrisdata/vector";
import { Document } from "langchain/document";
import { OpenAIEmbeddings } from "@langchain/openai";
import { TigrisVectorStore } from "langchain/vectorstores/tigris";
const index = new VectorDocumentStore({
connection: {
serverUrl: "api.preview.tigrisdata.cloud",
projectName: process.env.TIGRIS_PROJECT,
clientId: process.env.TIGRIS_CLIENT_ID,
clientSecret: process.env.TIGRIS_CLIENT_SECRET,
},
indexName: "examples_index",
numDimensions: 1536, // match the OpenAI embedding size
});
const docs = [
new Document({
metadata: { foo: "bar" },
pageContent: "tigris is a cloud-native vector db",
}),
new Document({
metadata: { foo: "bar" },
pageContent: "the quick brown fox jumped over the lazy dog",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "lorem ipsum dolor sit amet",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "tigris is a river",
}),
];
await TigrisVectorStore.fromDocuments(docs, new OpenAIEmbeddings(), { index });
Query docs
import { VectorDocumentStore } from "@tigrisdata/vector";
import { OpenAIEmbeddings } from "@langchain/openai";
import { TigrisVectorStore } from "langchain/vectorstores/tigris";
const index = new VectorDocumentStore({
connection: {
serverUrl: "api.preview.tigrisdata.cloud",
projectName: process.env.TIGRIS_PROJECT,
clientId: process.env.TIGRIS_CLIENT_ID,
clientSecret: process.env.TIGRIS_CLIENT_SECRET,
},
indexName: "examples_index",
numDimensions: 1536, // match the OpenAI embedding size
});
const vectorStore = await TigrisVectorStore.fromExistingIndex(
new OpenAIEmbeddings(),
{ index }
);
/* Search the vector DB independently with metadata filters */
const results = await vectorStore.similaritySearch("tigris", 1, {
"metadata.foo": "bar",
});
console.log(JSON.stringify(results, null, 2));
/*
[
Document {
pageContent: 'tigris is a cloud-native vector db',
metadata: { foo: 'bar' }
}
]
*/
Related
- Vector store conceptual guide
- Vector store how-to guides