Rockset
Rockset is a real-time analyitics SQL database that runs in the cloud. Rockset provides vector search capabilities, in the form of SQL functions, to support AI applications that rely on text similarity.
Setup
Install the rockset client.
yarn add @rockset/client
Usage
- npm
- Yarn
- pnpm
npm install @langchain/openai @langchain/community
yarn add @langchain/openai @langchain/community
pnpm add @langchain/openai @langchain/community
Below is an example showcasing how to use OpenAI and Rockset to answer questions about a text file:
import * as rockset from "@rockset/client";
import { ChatOpenAI, OpenAIEmbeddings } from "@langchain/openai";
import { RocksetStore } from "@langchain/community/vectorstores/rockset";
import { RecursiveCharacterTextSplitter } from "@langchain/textsplitters";
import { readFileSync } from "fs";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { createStuffDocumentsChain } from "langchain/chains/combine_documents";
import { createRetrievalChain } from "langchain/chains/retrieval";
const store = await RocksetStore.withNewCollection(new OpenAIEmbeddings(), {
client: rockset.default.default(
process.env.ROCKSET_API_KEY ?? "",
`https://api.${process.env.ROCKSET_API_REGION ?? "usw2a1"}.rockset.com`
),
collectionName: "langchain_demo",
});
const model = new ChatOpenAI({ model: "gpt-3.5-turbo-1106" });
const questionAnsweringPrompt = ChatPromptTemplate.fromMessages([
[
"system",
"Answer the user's questions based on the below context:\n\n{context}",
],
["human", "{input}"],
]);
const combineDocsChain = await createStuffDocumentsChain({
llm: model,
prompt: questionAnsweringPrompt,
});
const chain = await createRetrievalChain({
retriever: store.asRetriever(),
combineDocsChain,
});
const text = readFileSync("state_of_the_union.txt", "utf8");
const docs = await new RecursiveCharacterTextSplitter().createDocuments([text]);
await store.addDocuments(docs);
const response = await chain.invoke({
input: "When was America founded?",
});
console.log(response.answer);
await store.destroy();
API Reference:
- ChatOpenAI from
@langchain/openai
- OpenAIEmbeddings from
@langchain/openai
- RocksetStore from
@langchain/community/vectorstores/rockset
- RecursiveCharacterTextSplitter from
@langchain/textsplitters
- ChatPromptTemplate from
@langchain/core/prompts
- createStuffDocumentsChain from
langchain/chains/combine_documents
- createRetrievalChain from
langchain/chains/retrieval
Related
- Vector store conceptual guide
- Vector store how-to guides